
Tessellations
Cross-curricular mission for CodeX

Tessellations
● A tessellation is a tiling over a surface with one or

more figures such that the surface is filled with no
overlaps and no gaps.

Mission: Tessellations
For this mission you will:
● Create a one-shape tessellation
● Create a two-shape tessellation
● Create a triangle tessellation
● Discuss some math that goes into a tessellation
● Create your own tessellation

Shape #1: A brick
A tessellation can be made with a single rectangle.

● Codex uses these functions:

● x, y are the location (column, row) of the upper left corner
● width of the rectangle is how far across in pixels
● height of the rectangle is how far down in pixels

x, y width

height

Shape #1: A brick

A tessellation can be made with a single rectangle.

● Create a file named Tessellations
● Import the codex and random modules
● Define a function that draws a brick
● Call the function
● Run the code

Shape #1: A brick
This function draws a rectangle at (100, 80) that is 50 pixels wide & 20 long.

● Try different numbers for x, y, width and height.

Shape #1: A brick
You want to draw the brick around the surface without explicitly drawing
every single brick.

● Use variables for the x and y position – these are parameters
● Try calling the brick with different x and y positions – these are arguments
● NOTE: the width and height of the brick will stay the same (no variables)

Tessellating the brick
A tessellation is filling a surface with a shape, so we need more
than one brick.
● Use a loop to fill the surface with a row of bricks.

Initial values for x, y
Loop counter
How many loops
Change x by the width of the brick

Experiment with the loop counter until
you get a single row of bricks

Tessellating the brick
● Add a second loop to get multiple rows of bricks:

For each row, use a different loop
counter and number of loops.

Watch the indenting – you have a loop
within a loop (nested loops)

For each new row, reset x to 0 and
change y by the height of the brick.

Tessellating the brick
This is good, but not very interesting.

Tessellating the brick
● Let’s offset the bricks by half the

width

Half as many loops because
each loop will draw 2 rows

Regular row of bricks

Offset x, change y

Offset row of bricks

Reset x, change y

Tessellating the brick
Now add some color!
● Create a list of bright colors
● Use the list as a parameter in brick()

Create the list (use any
colors you want, as many as
you want)

Use a parameter for color

Shape #1 - Brick
Pretty cool!
● There is a lot of code here
● Let’s package it into a function
● Use parameters and arguments

for x, y and index
● Call the function when a button is

pressed

Shape #2 - A tetris shape
Have you noticed the shapes in Tetris? They fit together, kind
of like a tessellation.
● The light blue shape can be created by putting two bricks together.
● Create a function for “skew”

Shape #2 - Skew
This code is very similar to the brick, but with the second
rectangle offset
● Use graph paper to determine the x and y locations for each rectangle

First rectangle:
(0, 0, 50, 20)
Second rectangle:
(25, 20, 50, 20)
Using x and y for both locations:
(x, y, 50, 20, color)
(x+25, y+20, 50, 20, color)

Shape #2 - Skew
This function is very similar to the brick

● No need to outline the shape, just use two fill_rect() functions
● Don’t forget the parameters

Shape #2: Skew

Define a function for tessellating the skew.

● Start by trying just one row.
● It will be very similar to the brick, so you can even copy and

paste the code and make the needed change.
● Call the function in the main program, when a button is pressed.

Shape #2: Skew

Shape #2: Skew

Add code to make a second
off-set row of skews

● Add code to the tessell_skew()
loop to offset x and make
another row of the shape.

● This is very similar to the
tessell_brick() function, so you
can copy and paste and then
make the needed changes
○ Note: y has twice the height

Shape #2: Skew

You may notice there is a little gap
in the first row.

● To fix it, we can offset the first row
● Increase the loop count
● This is an easy fix to fill the gap.

Shape #2: Skew
Now add the second loop for more rows, and you
have your second complete tessellation.

● Do this part on your own.
● How many rows will you need in the second loop?

○ NOTE: each iteration of the second loop will draw
two rows.

Shape #3: Half-cross
Try another Tetris shape.
● Use graph paper to design your shape.
● Rotate the shape, as shown:

or

Shape #3: Half-cross
Call this Tetris shape “halfcross”.
● Determine the size of your half-cross (use two rectangles)
● Determine the x and y locations needed for your shape

Examples:

x, y+20, 20, 20
x+20, y, 20, 60

Shape #3: Half-cross
Create a function to draw the halfcross.
● Use your x, y width and height to draw the two rectangles.
● Create a tessell_halfcross function to call halfcross one time.
● Make sure the halfcross is the way you want it before continuing.

Shape #3: Half-cross
Draw a row of halfcross shapes.
● Add a loop to create one row of

shapes.
● How many loops are needed to go

across the screen?
● You may notice a gap in the upper left

corner.
● With skew, you offset the x value to fill

in the gap. This time adjust the y value
to fill the gap.

● Use an argument that works for your
shape and shape size.

Shape #3: Half-cross
Draw a tessellation of halfcross shapes.
Once you have a row of shapes the way you want it:
● Add another row of offset shapes in the loop.
● Add another loop to add rows to fill the surface.
● Call the function in the main program, when a button is pressed.

Shape #4: Isosceles triangle

CodeX doesn’t have a built-in function that draws a triangle.

● Use the display.draw_line() function to draw three lines.

● x1, y1 are the location (column, row) of the first line end
● x2, y2 are the location (column, row) of the second line end
● x2 & y2 can be defined in relation to x1 & y1

(10, 20)
 (x, y)

 (50, 40)
(x+40, y+20)

Shape #4: Isosceles triangle
Use graph paper to design an isosceles triangle.

● Determine the size of your triangle
● Determine the x1, y1 and x2, y2 locations

(x+60, y)

(x+30, y+30)

(x, y)

Shape #4: Isosceles triangle
Create a function to draw the triangle.
● Use the information from your graph to draw three lines to

form a triangle.
● Create a tessell_triangle function to draw a row of triangles.
● Add a button press to call tessell_triangle
● Make sure the triangle is the way you want it.

Shape #4: Isosceles triangle
The need for a flipped triangle
● After drawing one row of triangles, you determine that just

offsetting the next row will not fill in the gaps, and will cause
overlap – not a tessellation.

● To fill the gap you will need a flipped triangle.
● Use the graph paper to determine the values needed to draw a

flipped triangle.
● Create another function for the flipped triangle.

Shape #4: Isosceles triangle
Draw two rows of triangles
● Add a second loop to draw a row of

flipped triangles.
● Determine what values are needed

for x and y before starting the
second row.

● Your code could look similar to the
example.

Shape #4: Isosceles triangle
Draw two rows of triangles
● You notice that the second row of

triangles draws over part of the first
row of triangles.

● Offset the x and y values by 1 pixel to
see more of each triangle.

Shape #4: Isosceles triangle
Draw a tessellation of triangles
● Add another loop to add rows to fill the

surface.
● You can use some math to determine the

values of x and y, or use trial and error
● HINT: The flipped triangles are on the

same row as the next regular triangles.

Shape #5: Your own shape
Decide on a shape to tessellate.
● Use graph paper to design your shape.
● Make sure your shape is able to tessellate –

○ It needs to fill the surface without gaps or overlaps
○ Your shape could require a flip or rotation

Shape #5: Your own shape
Decide on a shape to tessellate.
● Possibilities:

○ An isosceles triangle with a straight side
○ A half cross facing a different direction
○ A different Tetris shape
○ Your own shape made from rectangles
○ Your own shape made from lines

Shape #5: Your own shape
Use graph paper to design your own tessellation shape.

Shape #5: Your own shape
Write the code.
● Create a my_shape() function to draw your own shape
● Create a tessell_my_shape() function to draw a single row of

your shape
● When the row looks like a tessellation row, complete the code by

adding an offset row and a loop
● Call the function in the main program, when a button is pressed.
● Test and debug as needed

Tessellation Extensions
Geometry emphasis:
● Scaling – use graph paper to draw the shape and then code it

on CodeX. Measure it on the shape on the Codex and calculate
the scaling. Use different types or sizes of graph paper to
demonstrate different scales of the shape and calcuate the
scaling.

Tessellation Extensions
Geometry emphasis:
● Tessellation shapes – review the requirements for a

tessellation. Have students look at several different shapes and
determine if they tessellate. If so, what would
the configuration of shapes look like?
This website gives a good explanation of the
math involved in a tessellation.

https://flexbooks.ck12.org/cbook/ck-12-middle-school-math-concepts-grade-8/section/6.16/related/lesson/tessellations-geom/#:~:text=Examples%20of%20tessellations%20are%3A%20a,Here%20are%20a%20few%20examples.

Tessellation Extensions
Geometry emphasis:
● Flip and rotate – create a tessellation that requires a flipped

shape, or a tessellation that requires a rotation of the shape.
Show the math for the flip / rotation.

Tessellation Extensions
Algebra emphasis:
● Focus on the math used to create the shape on a Cartesian

graph, in relation to x and y. Use the graph to rotate or flip
the shape and show the math of how to go from one shape
to another.

● As a challenge, try writing code for a tessellation with a
flipped shape without creating a second function for flipped,
but just using math.

Tessellation Extensions
Art emphasis:
● Create a shape and use a color palette that sets a mood.

Use RGB colors to specify the colors instead of using the
built-in colors.

● Use this slide deck for more information about RGB
colors and CodeX.

https://docs.google.com/presentation/d/1Kc0cbNeg7jkExXYctWY5IQ5cgtJ6lC9f3eEU6vSU_9A/edit?usp=sharing

Tessellation Extensions
Art emphasis:
● Use two different color lists – one for the regular row and

one for the offset row.
● Options for lists:

○ One of primary colors and one of secondary colors
○ One list that has shades of one color, and the other

list has shades of a different color
○ Use only two or four colors
○ Compare a tessellation with a lot of color with a

tessellation that is black and white

